äžçäžã®ãšããžããã€ã¹ã«AIã¢ãã«ãå°å ¥ããããã®å¿ é ã®ã¢ãã«å§çž®æè¡ãæ¢ããŸããããã©ãŒãã³ã¹ãæé©åãããªãœãŒã¹æ¶è²»ãåæžããŸãã
ãšããžAIïŒã°ããŒãã«å±éã®ããã®ã¢ãã«å§çž®æè¡
ãšããžAIã®å°é ã¯ãèšç®ãšããŒã¿ã¹ãã¬ãŒãžãããŒã¿ãœãŒã¹ã®è¿ãã«é 眮ããããšã§ãæ§ã ãªç£æ¥ã«é©åœããããããŠããŸãããã®ãã©ãã€ã ã·ããã«ãããå¿çæéã®ççž®ããã©ã€ãã·ãŒã®åŒ·åã垯åå¹ æ¶è²»ã®åæžãå¯èœã«ãªããŸãããããããªãœãŒã¹ã«å¶çŽã®ãããšããžããã€ã¹ã«è€éãªAIã¢ãã«ãå±éããããšã¯ãé倧ãªèª²é¡ãæç€ºããŸããã¢ãã«å§çž®æè¡ã¯ããããã®å¶çŽãå æããäžçäžã§ãšããžAIã®åºç¯ãªæ¡çšãå¯èœã«ããããã«äžå¯æ¬ ã§ãã
ã°ããŒãã«ãªãšããžAIå±éã«ãããŠã¢ãã«å§çž®ãéèŠãªçç±
ã¹ããŒããã©ã³ãIoTã»ã³ãµãŒãçµã¿èŸŒã¿ã·ã¹ãã ãªã©ã®ãšããžããã€ã¹ã¯ãéåžžãåŠçèœåãã¡ã¢ãªãããããªãŒå¯¿åœãéãããŠããŸãããããã®ããã€ã¹ã«å€§èŠæš¡ã§è€éãªAIã¢ãã«ãçŽæ¥å±éãããšã次ã®ãããªåé¡ãçºçããå¯èœæ§ããããŸãã
- é«é å»¶ïŒæšè«æéãé ããšããªã¢ã«ã¿ã€ã ã¢ããªã±ãŒã·ã§ã³ã®åŠšãã«ãªãå¯èœæ§ããããŸãã
- é床ã®é»åæ¶è²»ïŒããããªãŒå¯¿åœãæ¶èãããããšã§ããšããžããã€ã¹ã®éçšå¯¿åœãå¶éãããŸãã
- ã¡ã¢ãªå¶çŽïŒå€§èŠæš¡ãªã¢ãã«ã¯å©çšå¯èœãªã¡ã¢ãªãè¶ ããå¯èœæ§ããããå±éã劚ããŸãã
- ã³ã¹ãã®å¢å ïŒããé«ãããŒããŠã§ã¢èŠä»¶ã¯ãå±éã³ã¹ãã®å¢å ã«ã€ãªãããŸãã
ã¢ãã«å§çž®æè¡ã¯ã粟床ãå€§å¹ ã«ç ç²ã«ããããšãªãAIã¢ãã«ã®ãµã€ãºãšè€éããåæžããããšã§ããããã®èª²é¡ã«å¯ŸåŠããŸããããã«ããããªãœãŒã¹ã«å¶çŽã®ããããã€ã¹ãžã®å¹ççãªå±éãå¯èœã«ãªãã倿§ãªã°ããŒãã«ã³ã³ããã¹ãã§å¹ åºãã¢ããªã±ãŒã·ã§ã³ãå©çšå¯èœã«ãªããŸãã
äž»èŠãªã¢ãã«å§çž®æè¡
ãšããžAIã§ã¯ãããã€ãã®ã¢ãã«å§çž®æè¡ãäžè¬çã«æ¡çšãããŠããŸãã
1. éåå (Quantization)
éååã¯ãã¢ãã«ã®éã¿ãšæŽ»æ§å颿°ã®ç²ŸåºŠãæµ®åå°æ°ç¹æ°ïŒäŸïŒ32ããããŸãã¯16ãããïŒããäœãããæŽæ°ïŒäŸïŒ8ãããã4ãããããããã¯ãã€ããªïŒã«åæžããŸããããã«ãããã¢ãã«ã®ã¡ã¢ãªãããããªã³ããšèšç®ã®è€éãã軜æžãããŸãã
éååã®çš®é¡ïŒ
- åŠç¿åŸéåå (Post-Training Quantization, PTQ)ïŒ ããã¯æãåçŽãªåœ¢åŒã®éååã§ãã¢ãã«ãæµ®åå°æ°ç¹ç²ŸåºŠã§åŠç¿ãããåŸãéååããŸããæå°éã®åŽåã§æžã¿ãŸããã粟床ã®äœäžã«ã€ãªããå¯èœæ§ããããŸãã粟床ã®äœäžã軜æžããããã«ããã£ãªãã¬ãŒã·ã§ã³ããŒã¿ã»ãããªã©ã®æè¡ããã䜿çšãããŸãã
- éååãæèããåŠç¿ (Quantization-Aware Training, QAT)ïŒ ããã¯ãéååã念é ã«çœ®ããŠã¢ãã«ãåŠç¿ããããã®ã§ããåŠç¿äžã«ãã¢ãã«ã¯éååã®åœ±é¿ãã·ãã¥ã¬ãŒãããéååããã圢åŒã§å±éãããéã«ç²ŸåºŠãç¶æããããã«é©å¿ããŸããQATã¯éåžžãPTQãããåªãã粟床ããããããŸãããããå€ãã®èšç®ãªãœãŒã¹ãšå°éç¥èãå¿ èŠã§ãã
- åçéååïŒ æšè«äžã«ã掻æ§å颿°ã®ç¯å²ã«åºã¥ããŠéååãã©ã¡ãŒã¿ãåçã«æ±ºå®ãããŸããããã«ãããéçéååãšæ¯èŒããŠç²ŸåºŠãåäžããå¯èœæ§ããããŸãããããã€ãã®ãªãŒããŒããããçºçããŸãã
äŸïŒ
ãã¥ãŒã©ã«ãããã¯ãŒã¯å ã®éã¿ã32ãããæµ®åå°æ°ç¹æ°ãšããŠè¡šçŸãããå€0.75ã§ãããšããŸãã8ãããæŽæ°ã«éååãããšããã®å€ã¯ïŒã¹ã±ãŒãªã³ã°ä¿æ°ãä»®å®ããŠïŒ192ãšããŠè¡šçŸããããããããŸãããããã«ãããéã¿ã«å¿ èŠãªã¹ãã¬ãŒãžã¹ããŒã¹ãå€§å¹ ã«åæžãããŸãã
ã°ããŒãã«ãªèæ ®äºé ïŒ
ç°ãªãããŒããŠã§ã¢ãã©ãããã©ãŒã ã¯ãç°ãªãéååã¹ããŒã ã«å¯ŸããŠæ§ã ãªã¬ãã«ã®ãµããŒããæäŸããŠããŸããäŸãã°ãäžéšã®ã¢ãã€ã«ããã»ããµã¯8ãããæŽæ°æŒç®ã«æé©åãããŠããŸãããä»ã®ããã»ããµã¯ããç©æ¥µçãªéååã¬ãã«ããµããŒãããå ŽåããããŸããããã€ã¹ãå±éãããç¹å®ã®å°åã§ãã¿ãŒã²ããããŒããŠã§ã¢ãã©ãããã©ãŒã ãšäºææ§ã®ããéååã¹ããŒã ãéžæããããšãéèŠã§ãã
2. æåã (Pruning)
æåãïŒãã«ãŒãã³ã°ïŒã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ããéèŠã§ãªãéã¿ãæ¥ç¶ãåé€ããããšã§ããããã«ãããã¢ãã«ã®ããã©ãŒãã³ã¹ãå€§å¹ ã«æãªãããšãªããã¢ãã«ã®ãµã€ãºãšè€éããåæžããŸãã
æåãã®çš®é¡ïŒ
- éã¿ã®æåãïŒ çµ¶å¯Ÿå€ãå°ããåã ã®éã¿ããŒãã«èšå®ããŸããããã«ãããã¹ããŒã¹ãªéã¿è¡åãäœæãããããå¹ççã«å§çž®ããã³åŠçã§ããŸãã
- ãã¥ãŒãã³ã®æåãïŒ ãããã¯ãŒã¯ãããã¥ãŒãã³å šäœãŸãã¯ãã£ãã«å šäœãåé€ããŸããããã«ãããã¢ãã«ãµã€ãºãããå€§å¹ ã«åæžã§ããŸããã粟床ãç¶æããããã«ååŠç¿ãå¿ èŠã«ãªãå ŽåããããŸãã
- å±€ã®æåãïŒ å šäœçãªããã©ãŒãã³ã¹ãžã®è²¢ç®ãæå°éã§ããå Žåãå±€å šäœãåé€ããããšãã§ããŸãã
äŸïŒ
ãã¥ãŒã©ã«ãããã¯ãŒã¯ã«ãããŠã2ã€ã®ãã¥ãŒãã³ãæ¥ç¶ããéã¿ã®å€ããŒãã«è¿ãïŒäŸïŒ0.001ïŒãšããŸãããã®éã¿ãæåããããšãå€ããŒãã«èšå®ãããæ¥ç¶ãäºå®äžåé€ãããŸããããã«ãããæšè«äžã«å¿ èŠãªèšç®æ°ãæžå°ããŸãã
ã°ããŒãã«ãªèæ ®äºé ïŒ
æé©ãªæåãæŠç¥ã¯ãç¹å®ã®ã¢ãã«ã¢ãŒããã¯ãã£ãšã¿ãŒã²ããã¢ããªã±ãŒã·ã§ã³ã«äŸåããŸããäŸãã°ãäœåž¯åå¹ ç°å¢ã§å±éãããã¢ãã«ã¯ã粟床ããããã«äœäžããŠãã¢ãã«ãµã€ãºãæå°éã«æããããã«ãç©æ¥µçãªæåãããæ©æµãåããå¯èœæ§ããããŸããéã«ã髿§èœç°å¢ã§å±éãããã¢ãã«ã¯ããµã€ãºããã粟床ãåªå ããå ŽåããããŸãããã®ãã¬ãŒããªãã¯ãã°ããŒãã«ãªå±éã³ã³ããã¹ãã®ç¹å®ã®ããŒãºã«åãããŠèª¿æŽããå¿ èŠããããŸãã
3. ç¥èèžç (Knowledge Distillation)
ç¥èèžçã¯ãããå°ãããçåŸãã¢ãã«ãåŠç¿ããããã倧ããè€éãªãæåž«ãã¢ãã«ã®æ¯ãèããæš¡å£ãããææ³ã§ããæåž«ã¢ãã«ã¯éåžžãååã«èšç·Žãããé«ç²ŸåºŠã®ã¢ãã«ã§ãããçåŸã¢ãã«ã¯ããå°ããå¹ççã«ãªãããã«èšèšãããŠããŸãã
ããã»ã¹ïŒ
- å€§èŠæš¡ã§æ£ç¢ºãªæåž«ã¢ãã«ãåŠç¿ãããŸãã
- æåž«ã¢ãã«ã䜿çšããŠããã¬ãŒãã³ã°ããŒã¿çšã®ããœããã©ãã«ããçæããŸãããœããã©ãã«ã¯ãããŒããªã¯ã³ãããã©ãã«ã§ã¯ãªããã¯ã©ã¹ã«å¯Ÿãã確çååžã§ãã
- æåž«ã¢ãã«ã«ãã£ãŠçæããããœããã©ãã«ã«äžèŽããããã«çåŸã¢ãã«ãåŠç¿ãããŸããããã«ãããçåŸã¢ãã«ãæåž«ã¢ãã«ã«ãã£ãŠæããããæ ¹åºã«ããç¥èãåŠã¶ããšãä¿é²ãããŸãã
äŸïŒ
å€§èŠæš¡ãªç»åããŒã¿ã»ããã§åŠç¿ãããå€§èŠæš¡ãªç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒCNNïŒãæåž«ã¢ãã«ãšããŠäœ¿çšãããŸããããå°ããå¹ççãªCNNãçåŸã¢ãã«ãšããŠåŠç¿ãããŸããçåŸã¢ãã«ã¯ãæåž«ã¢ãã«ãšåã確çååžãäºæž¬ããããã«åŠç¿ããã广çã«æåž«ã®ç¥èãåŠã³ãŸãã
ã°ããŒãã«ãªèæ ®äºé ïŒ
ç¥èèžçã¯ããšããžããã€ã¹äžã§çŽæ¥å€§èŠæš¡ã¢ãã«ãåŠç¿ãããããšãçŸå®çã§ãªããªãœãŒã¹å¶çŽã®ããç°å¢ã§AIã¢ãã«ãå±éããå Žåã«ç¹ã«åœ¹ç«ã¡ãŸããããã«ããã匷åãªãµãŒããŒãã¯ã©ãŠããã©ãããã©ãŒã ãã軜éãªãšããžããã€ã¹ã«ç¥èã転éããããšãã§ããŸããããã¯ãèšç®ãªãœãŒã¹ãéãããŠããããã€ã³ã¿ãŒãããæ¥ç¶ãä¿¡é Œã§ããªãå°åã§ç¹ã«é¢é£æ§ããããŸãã
4. å¹ççãªã¢ãŒããã¯ãã£
å¹ççãªã¢ãã«ã¢ãŒããã¯ãã£ããŒãããèšèšããããšã§ãAIã¢ãã«ã®ãµã€ãºãšè€éããå€§å¹ ã«åæžã§ããŸããããã«ã¯ã次ã®ãããªæè¡ã®äœ¿çšãå«ãŸããŸãã
- æ·±ãæ¹ååé¢å¯èœç³ã¿èŸŒã¿ (Depthwise Separable Convolutions)ïŒ ãããã®ç³ã¿èŸŒã¿ã¯ãæšæºçãªç³ã¿èŸŒã¿ãæ·±ãæ¹åç³ã¿èŸŒã¿ãšç¹åäœç³ã¿èŸŒã¿ã®2ã€ã®å¥ã ã®æäœã«åè§£ããŸããããã«ãããå¿ èŠãªãã©ã¡ãŒã¿ãšèšç®ã®æ°ãåæžãããŸãã
- MobileNetsïŒ ã¢ãã€ã«ããã€ã¹åãã«èšèšããã軜éCNNã¢ãŒããã¯ãã£ã®ãã¡ããªãŒã§ããMobileNetsã¯ãæ·±ãæ¹ååé¢å¯èœç³ã¿èŸŒã¿ããã®ä»ã®æè¡ã䜿çšããŠãæå°éã®èšç®ã³ã¹ãã§é«ã粟床ãéæããŸãã
- ShuffleNetïŒ ãã£ãã«éã®æ å ±ãããŒãæ¹åããããã«ãã£ãã«ã·ã£ããã«æäœã䜿çšãããããäžã€ã®è»œéCNNã¢ãŒããã¯ãã£ã®ãã¡ããªãŒã§ãã
- SqueezeNetïŒ ç²ŸåºŠãç¶æããªãããã©ã¡ãŒã¿æ°ãåæžããããã«ããsqueezeãå±€ãšãexpandãå±€ã䜿çšããCNNã¢ãŒããã¯ãã£ã§ãã
- ã¢ãã³ã·ã§ã³ã¡ã«ããºã ïŒ ã¢ãã³ã·ã§ã³ã¡ã«ããºã ãçµã¿èŸŒãããšã§ãã¢ãã«ãå ¥åã®æãé¢é£æ§ã®é«ãéšåã«éäžã§ããããã«ãªããå€§èŠæš¡ã§å¯ãªå±€ã®å¿ èŠæ§ãæžå°ããŸãã
äŸïŒ
CNNã®æšæºçãªç³ã¿èŸŒã¿å±€ãæ·±ãæ¹ååé¢å¯èœç³ã¿èŸŒã¿ã«çœ®ãæããããšã§ããã©ã¡ãŒã¿ãšèšç®ã®æ°ãå€§å¹ ã«åæžã§ããã¢ãã«ãã¢ãã€ã«ããã€ã¹ã§ã®å±éã«ããé©ãããã®ã«ããããšãã§ããŸãã
ã°ããŒãã«ãªèæ ®äºé ïŒ
å¹ççãªã¢ãŒããã¯ãã£ã®éžæã¯ãç¹å®ã®ã¿ã¹ã¯ãšã¿ãŒã²ããããŒããŠã§ã¢ãã©ãããã©ãŒã ã«åãããŠèª¿æŽããå¿ èŠããããŸããäžéšã®ã¢ãŒããã¯ãã£ã¯ç»ååé¡ã«ããé©ããŠããå Žåããããä»ã®ã¢ãŒããã¯ãã£ã¯èªç¶èšèªåŠçã«ããé©ããŠããå ŽåããããŸããæè¯ã®éžæè¢ã決å®ããããã«ãã¿ãŒã²ããããŒããŠã§ã¢ã§ããŸããŸãªã¢ãŒããã¯ãã£ããã³ãããŒã¯ããããšãéèŠã§ããç¹ã«é»åäŸçµŠãæžå¿µãããå°åã§ã¯ããšãã«ã®ãŒå¹çãªã©ã®èæ ®äºé ãèæ ®ã«å ¥ããã¹ãã§ãã
å§çž®æè¡ã®çµã¿åãã
ã¢ãã«å§çž®ãžã®æã广çãªã¢ãããŒãã¯ãå€ãã®å Žåãè€æ°ã®æè¡ãçµã¿åãããããšã§ããäŸãã°ãã¢ãã«ã«æåããæœããæ¬¡ã«éååããæåŸã«èžçããããšã§ããã®ãµã€ãºãšè€éããããã«åæžã§ããŸãããããã®æè¡ãé©çšãããé åºããæçµçãªããã©ãŒãã³ã¹ã«åœ±é¿ãäžããå¯èœæ§ããããŸããç¹å®ã®ã¿ã¹ã¯ãšããŒããŠã§ã¢ãã©ãããã©ãŒã ã«æé©ãªçµã¿åãããèŠã€ããã«ã¯ãå®éšãéµãšãªããŸãã
ã°ããŒãã«å±éã«ãããå®è·µçãªèæ ®äºé
å§çž®ãããAIã¢ãã«ãã°ããŒãã«ã«å±éããã«ã¯ãããã€ãã®èŠå ãæ éã«èæ ®ããå¿ èŠããããŸãã
- ããŒããŠã§ã¢ã®å€æ§æ§ïŒ ãšããžããã€ã¹ã¯ãåŠçèœåãã¡ã¢ãªãããããªãŒå¯¿åœã®ç¹ã§å€§ããç°ãªããŸããå§çž®æŠç¥ã¯ãç°ãªãå°åã®ã¿ãŒã²ããããã€ã¹ã®ç¹å®ã®ããŒããŠã§ã¢èœåã«åãããŠèª¿æŽããå¿ èŠããããŸãã
- ãããã¯ãŒã¯æ¥ç¶æ§ïŒ ãããã¯ãŒã¯æ¥ç¶ãéãããŠãããä¿¡é Œã§ããªãå°åã§ã¯ããšããžããã€ã¹äžã§ããå€ãã®èšç®ãããŒã«ã«ã§å®è¡ããå¿ èŠãããå ŽåããããŸããããã«ã¯ãã¢ãã«ãµã€ãºãæå°éã«æããã¯ã©ãŠããªãœãŒã¹ãžã®äŸåãæžããããã«ãããç©æ¥µçãªã¢ãã«å§çž®ãå¿ èŠã«ãªãå ŽåããããŸãã
- ããŒã¿ãã©ã€ãã·ãŒïŒ ã¢ãã«å§çž®æè¡ã¯ãã¯ã©ãŠãã«éä¿¡ããå¿ èŠãããããŒã¿éãæžããããšã§ãããŒã¿ãã©ã€ãã·ãŒã匷åããããã«ã䜿çšã§ããŸããé£ååŠç¿ãã¢ãã«å§çž®ãšçµã¿åãããããšã§ãæ©å¯ããŒã¿ãå ±æããããšãªãå調çãªã¢ãã«åŠç¿ãå¯èœã«ãªããŸãã
- èŠå¶éµå®ïŒ åœã«ãã£ãŠããŒã¿ãã©ã€ãã·ãŒãšã»ãã¥ãªãã£ã«é¢ããèŠå¶ãç°ãªããŸããAIã¢ãã«ã®å±éã¯ã察象å°åã§é©çšããããã¹ãŠã®èŠå¶ã«æºæ ããå¿ èŠããããŸãã
- ããŒã«ãªãŒãŒã·ã§ã³ïŒ AIã¢ãã«ã¯ãç°ãªãèšèªãæåçèæ¯ããµããŒãããããã«ããŒã«ã©ã€ãºããå¿ èŠãããå ŽåããããŸããããã«ã¯ãã¢ãã«ã¢ãŒããã¯ãã£ã®é©å¿ãããŒã«ã©ã€ãºãããããŒã¿ã§ã®ã¢ãã«ã®ååŠç¿ããŸãã¯æ©æ¢°ç¿»èš³æè¡ã®äœ¿çšãå«ãŸããå ŽåããããŸãã
- ãšãã«ã®ãŒå¹çïŒ ç¹ã«é»åãžã®ã¢ã¯ã»ã¹ãéãããŠããå°åã§ã¯ããšããžããã€ã¹ã®ããããªãŒå¯¿åœãå»¶ã°ãããã«ãšãã«ã®ãŒæ¶è²»ãæé©åããããšãäžå¯æ¬ ã§ãã
ããŒã«ãšãã¬ãŒã ã¯ãŒã¯
ã¢ãã«å§çž®ãšãšããžããã€ã¹ãžã®å±éãæ¯æŽããããã«ãããã€ãã®ããŒã«ãšãã¬ãŒã ã¯ãŒã¯ãå©çšå¯èœã§ãã
- TensorFlow LiteïŒ TensorFlowã¢ãã«ãã¢ãã€ã«ããã³çµã¿èŸŒã¿ããã€ã¹ã«å±éããããã®ããŒã«ã»ããã§ããTensorFlow Liteã«ã¯ãéååãæåãããã®ä»ã®ã¢ãã«å§çž®æè¡ã®ãµããŒããå«ãŸããŠããŸãã
- PyTorch MobileïŒ PyTorchã¢ãã«ãã¢ãã€ã«ããã€ã¹ã«å±éããããã®ãã¬ãŒã ã¯ãŒã¯ã§ããPyTorch Mobileã¯ãéååãæåãããã®ä»ã®æé©åæè¡ã®ããã®ããŒã«ãæäŸããŸãã
- ONNX RuntimeïŒ å¹ åºãããŒããŠã§ã¢ãã©ãããã©ãŒã ããµããŒãããã¯ãã¹ãã©ãããã©ãŒã ã®æšè«ãšã³ãžã³ã§ããONNX Runtimeã«ã¯ãã¢ãã«ã®éååãšæé©åã®ãµããŒããå«ãŸããŠããŸãã
- Apache TVMïŒ æ§ã ãªããŒããŠã§ã¢ãã©ãããã©ãŒã äžã§æ©æ¢°åŠç¿ã¢ãã«ãæé©åããå±éããããã®ã³ã³ãã€ã©ãã¬ãŒã ã¯ãŒã¯ã§ãã
- Qualcomm AI EngineïŒ Qualcomm Snapdragonããã»ããµäžã§AIã¯ãŒã¯ããŒããé«éåããããã®ããŒããŠã§ã¢ããã³ãœãããŠã§ã¢ãã©ãããã©ãŒã ã§ãã
- MediaTek NeuroPilotïŒ MediaTekããã»ããµã«AIã¢ãã«ãå±éããããã®ãã©ãããã©ãŒã ã§ãã
- Intel OpenVINO ToolkitïŒ IntelããŒããŠã§ã¢äžã§AIã¢ãã«ãæé©åããå±éããããã®ããŒã«ãããã§ãã
å°æ¥ã®åå
ã¢ãã«å§çž®ã®åéã¯çµ¶ããé²åããŠããŸããå°æ¥ã®äž»èŠãªãã¬ã³ãã«ã¯ã次ã®ãããªãã®ããããŸãã
- ãã¥ãŒã©ã«ã¢ãŒããã¯ãã£æ¢çŽ¢ (NAS)ïŒ å¹ççãªã¢ãã«ã¢ãŒããã¯ãã£ã®èšèšããã»ã¹ãèªååããŸãã
- ããŒããŠã§ã¢ãæèããNASïŒ ã¿ãŒã²ããã®ããŒããŠã§ã¢ãã©ãããã©ãŒã ã«ç¹åããŠæé©åãããã¢ãã«ãèšèšããŸãã
- åçã¢ãã«å§çž®ïŒ çŸåšã®åäœæ¡ä»¶ãšãªãœãŒã¹ã®å¯çšæ§ã«åºã¥ããŠå§çž®æŠç¥ãé©å¿ãããŸãã
- ã¢ãã«å§çž®ã䌎ãé£ååŠç¿ïŒ é£ååŠç¿ãšã¢ãã«å§çž®ãçµã¿åãããŠããªãœãŒã¹ãéããããšããžããã€ã¹ã§ã®å調çãªã¢ãã«åŠç¿ãå¯èœã«ããŸãã
- å§çž®ã¢ãã«ã®ããã®èª¬æå¯èœãªAI (XAI)ïŒ å§çž®ãããã¢ãã«ãè§£éå¯èœã§ä¿¡é Œã§ãããã®ã§ããç¶ããããšãä¿èšŒããŸãã
çµè«
ã¢ãã«å§çž®ã¯ããšããžAIã®åºç¯ãªæ¡çšãã°ããŒãã«ã«å¯èœã«ããããã®äžå¯æ¬ ãªæè¡ã§ããAIã¢ãã«ã®ãµã€ãºãšè€éããåæžããããšã«ããããªãœãŒã¹ã«å¶çŽã®ãããšããžããã€ã¹ã«å±éããããšãå¯èœã«ãªãã倿§ãªã³ã³ããã¹ãã§å¹ åºãã¢ããªã±ãŒã·ã§ã³ãå©çšå¯èœã«ãªããŸãããšããžAIã®åéãé²åãç¶ããäžã§ãã¢ãã«å§çž®ã¯ãAIã誰ããã©ãã§ãå©çšã§ããããã«ããäžã§ããŸããŸãéèŠãªåœ¹å²ãæããã§ãããã
ãšããžAIã¢ãã«ãã°ããŒãã«èŠæš¡ã§æåè£ã«å±éããã«ã¯ãç°ãªãå°åãããŒããŠã§ã¢ãã©ãããã©ãŒã ãæç€ºããç¬èªã®èª²é¡ãšæ©äŒãæ éã«èšç»ããèæ ®ããå¿ èŠããããŸãããã®ã¬ã€ãã§èª¬æããæè¡ãšããŒã«ã掻çšããããšã§ãéçºè ãçµç¹ã¯ãAIãæ¥åžžçæŽ»ã«ã·ãŒã ã¬ã¹ã«çµ±åãããäžçäžã®äººã ã®å¹çãçç£æ§ãçæŽ»ã®è³ªãåäžãããæªæ¥ãžã®éãåãéãããšãã§ããŸãã